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ABSTRACT 

The Cycling Representer Method, which is a technique for solving 4D-variational data assimilation prob- 
lems, has been demonstrated to improve the assimilation accuracy with simpler nonlinear models. In this 
paper, the Cycling Representer Method will be used to assimilate an array of ADCP velocity observations 
with the Navy Coastal Ocean Model (NCOM). Experiments are performed in a high-resolution Mississippi 
Bight domain for the entire month of June, 2004 and demonstrate the usefulness of this assimilation tech- 
nique in a realistic application. 
The Representer Method is solved by minimizing a cost function containing the weighted squared errors 
of velocity measurements, initial conditions, boundary conditions, and model dynamics. NCOM. however, 
is a highly nonlinear model and in order to converge towards the global minimum of this cost function, 
NCOM is linearized about a background state using tangent linearization. The stability of this tangent lin- 
earized model (TLM) is a very sensitive function of the background state, the level of nonlinearity of the 
model, open boundary conditions, and the complexity of the bathymetry and flow field. For the Missis- 
sippi Bight domain, the TLM is stable for only about a day. Due to this short TLM stability time period, the 
Representer Method is cycled by splitting the time period of the assimilation problem into short intervals. 
The interval time period needs to be such that it is short enough for the TLM to be stable, but long enough 
to minimize the loss of information due to reducing the temporal correlation of the dynamics and data. 
For each new cycle, a background is created as a nonlinear forecast from the previous cycle's assimilated 
solution. This background, along with the data that falls within this new cycle, is then used to calculate a 
new assimilated solution. The experiments presented in this paper demonstrate the improvement of the 
assimilated solution as the time window of the cycles is reduced to 1 day. The 1-day cycling, however, 
was only optimal for the first half of the experiment. This is because there was a strong wind event near 
the middle of June that significantly reduced the stability of the 1-day cycling and caused substantial 
errors in the assimilation. Therefore, the 12-h cycling worked best for the second half of the experiment. 
This paper also demonstrates that the forecast skill is improved as the assimilation system progresses 
through the cycles. 

Published by Elsevier Ltd. 

1. Introduction 

Improving the capability to model and forecast the fundamental 
properties of the ocean has been the endeavor of numerous univer- 
sities, institutions, and agencies for many decades. The range of 
spatial and temporal scales that need to be resolved in order to 
properly model the fundamental ocean properties varies from 
large global scales all the way down to the submesoscale (littoral 
and coastal regions). The primary oceanic processes that govern 
the motion of the ocean can be drastically different between these 
two extreme resolution scales. For example, the ability to accu- 
rately model and forecast oceanic properties in a small-scale coast- 
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al domain requires a strategy that includes resolving processes 
resulting from things such as: complex bathymetry, coastal geom- 
etry, river inflow, atmospheric forcing, mixing, and horizontal 
shear instability. It is an inherently difficult problem to properly 
resolve all of the processes in a coastal environment, therefore, 
the models used to forecast in such regions will generally contain 
significant error. 

One of the key components to improving the accuracy of ocean 
forecasts is the inclusion of data and optimally merging it with the 
model. Models are always going to be in error and the data con- 
tains instrument noise, representativeness errors, and is almost al- 
ways going to be scarce relative to a discretized model. Therefore, 
an important question is how does one extract the most useful 
information possible from the data and apply it to maximize its 
influence on the model? Time-invariant assimilation techniques 



S.R. Smith. H.E. Ngodock / Ocean Modelling24 (2008) 92-107 93 

such as nudging, optimal interpolation, and 3D-variational assimi- 
lation (3DVAR) offer a limited ability for the data to effectively 
influence the correction of the model state. These techniques 
assimilate and correct the model state at unique analysis time 
stamps and are typically not temporally correlated, therefore, any 
potential temporal correlation information within the data and 
model is lost. These simpler techniques may be adequate and 
desirable for large-scale open ocean models since they are compu- 
tationally cheaper relative to the more sophisticated techniques 
such as 4D-variational assimilation (4DVAR) and ensemble Kalman 
filtering. These computationally intensive assimilation techniques 
may not be feasible for large domains. For small coastal regions, 
however, these techniques may not only be feasible, they may be 
critical in order to properly utilize all of the available data to coun- 
teract the model's deficiency in representing the complex physics. 
Advanced sequential data assimilation techniques such as the var- 
ious Kalman filters take into account the model physics and can 
propagate the influence of the data forward in time. With the rapid 
increase in computational resources, 4DVAR is becoming a popular 
assimilation technique since it not only propagates the influence of 
data forward in time but also backwards in time (through the ad- 
joint) and can provide corrections to the initial and boundary con- 
ditions, forcing, and the model physics. 

One technique that can be used to solve 4DVAR problems is the 
Representer Method (Bennett, 1992, 2002; Bennett et al., 1996, 
2000, 2006). The Representer Method is currently being employed 
by several institutions which are developing assimilation systems 
with sophisticated, baroclinic ocean models. For example, Muccino 
and Luo (2005) are applying the Representer Method to the Ad- 
vanced Circulation Model (ADCIRC), whereas, Moore et al. (2004) 
and Lorenzo et al. (2007) are applying this technique to the Regio- 
nal Ocean Modeling System (ROMS). One of the biggest challenges 
in developing a representer based assimilation system is that the 
model must first be linearized about a particular background. Since 
the linearized version of the model (TLM) is only an estimate of the 
full nonlinear (NL) model, it will only be stable for a finite period of 
time. There are many factors that contribute to how long the TLM 
can remain stable, such as the level of nonlinearity of the model, 
the resolution of the background, the open boundary conditions, 
and the complexity of the bathymetry and circulation field. It will 
be demonstrated in this study that the time period of TLM stability 
will be relatively short for a high-resolution coastal application 
with open boundaries along all four edges and linearized about a 
coarse background. 

The Cycling Representer Method, which was first introduced 
and applied by Xu and Daley (2000), can be used to overcome 
the problem of TLM instability. In Xu and Daley (2000), the authors 
cycle the Representer Method in time with a linear one-dimen- 
sional transport model in order to lay down the concept. Then in 
Xu and Daley (2002), the authors apply the Cycling Representer 
Method to a linear, barotropically unstable shallow water system. 
In both of these applications there was no issue with the TLM since 
both models were linear. Later, Xu et al. (2005) applied the Cycling 
Representer Method to NRL's operational global atmospheric mod- 
el called NOGAPS. Even though their system is designed to perform 
weak constraint assimilation, their current implementation as- 
sumes a perfect model (strong constraint). Recently, Ngodock et 
al. (2007a,b) explored the idea of applying the weak constraint Cy- 
cling Representer Method to the NL Lorenz attractor and reduced 
gravity ocean models, respectively. In these two studies, an initial 
background is first created by propagating the NL model forward 
over the first cycle. Then the TLM and adjoint of these perspective 
models are used to perform an assimilation using the Representer 
Method. For the second cycle, a forecast (background) is created by 
propagating the NL model forward using the final assimilated solu- 
tion from the previous cycle as the initial condition. Then another 

assimilation is performed for the second cycle using this new back- 
ground. This process is repeated for all subsequent cycles. Ngodock 
et al. (2007a,b) demonstrate that the Cycling Representer Method 
can be extremely beneficial in situations where the TLM is not sta- 
ble for the entire assimilation time window. It is shown that by cy- 
cling over time periods less than the stability time-frame of the 
TLM not only eliminates the instability problem, it significantly re- 
duces the overall cost of the assimilation, particularly when the 
need for outer-loops is dropped. Outer-loops (also known as Picard 
iterations) are typically required for NL models; they are iterations 
over the linearizations of the NL Euler-Lagrange problem associ- 
ated with the minimization of the cost function involving the NL 
model (Ngodock et al., 2000; Muccino and Luo, 2005; Rosmond 
and Xu, 2006; Kurapov et al., 2007). By using the Cycling Repre- 
senter Method, the need for outer-loops is reduced because the 
background is being updated in each subsequent cycle. Ngodock 
et al. (2007a,b) show that once the system is spun-up (typically 
after the first few cycles), the background is trained towards the 
data and the TLM is sufficiently stable to eliminate the need for 
outer-loops. 

Many of the previous applications of the Cycling Representer 
Method have been with either linear models or simple, low-dimen- 
sional NL problems. In this study, the validity of the Cycling Repre- 
senter Method is taken one step forward and demonstrated in a 
realistic application with the Navy Coastal Ocean Model (NCOM). 
NCOM is a NL, multi-layered, baroclinic ocean model that is de- 
signed to resolve coastal features (Martin, 2000; Barron et al., 
2006; Kara et al., 2006). Experiments are performed by assimilat- 
ing velocity measurements from an array of 14 acoustic Doppler 
current profile (ADCP) moorings deployed on the shelf and slope 
of the Mississippi Bight during the month of June 2004 (Fig. 1). This 
data set and region are favorable in demonstrating the importance 
and uniqueness of this assimilation technique because velocity 
measurements are notoriously difficult to assimilate into ocean 
models (Smith and Jacobs, 2005; Smith et al., 2005). This is espe- 
cially the case in highly dynamical shelf-break regions such as 
the Mississippi Bight where the circulation is dominated by multi- 
ple processes such as inertial oscillations, winds, river outflow, and 
intruding eddies, thus causing the velocity observations to have a 
wide range of values (Teague et al., 2006; Carnes et al., 2008). All 
ocean models (including NCOM) have a difficult time accurately 
accounting for all of the dynamics in a shelf-break region and rep- 
resenting a high-resolution velocity data set (such as the one used 
in this study). Prior to performing the assimilation experiments 
presented in this paper, NCOM fields were compared to the data, 
and more times than not the circulation fields were drastically dif- 
ferent (sometimes completely opposite). Such a velocity discrep- 
ancy may cause simpler assimilation techniques (ones that do 
not take into account the model physics) to produce dynamically 
inconsistent analyses. The Cycling Representer Method is unique 
in that by assimilating over shorter time periods and continuously 
updating the background, there is an improved capability of keep- 
ing the solution inline with the data and increasing its accuracy 
with subsequent cycles. More importantly though, is that initial 
condition, boundary condition, and dynamic error covariances 
can be specified to account for the unresolved oceanic processes. 
Therefore, during the cost function minimization, the dynamics, 
along with the initial and boundary conditions, will be modified 
over the entire space and time domain to produce a dynamically 
consistent solution that best matches the data (within the specified 
error limits). 

This paper is a continuation of previous studies (Ngodock et al., 
2007a,b) and is an ongoing effort towards demonstrating the use- 
fulness of applying the Cycling Representer Method to an opera- 
tional assimilation system for coastal regions that can assimilate 
a variety of measurement types and produce accurate forecasts 
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Fig. 1. The Mississippi Bight domain used for this study (black box). The 30 x 34 black dots represent the discretized grid of the model and the 14 numbered gray stars 
represent the ADCP mooring locations. 

in real-time. It is important to note that the assimilation system 
presented in this study is preliminary and there are obvious areas 
where improvement is needed (such as the specification of error 
covariances, and the inclusion of additional data types and weak 
constraint variables). Despite these shortcomings, this preliminary 
assimilation system is adequate for the fundamental objective of 
this study, which is to demonstrate the Cycling Representer Meth- 
od with NCOM and to show the importance of properly specifying 
the cycling time period to overcome TLM instability. 

In the next three sections of this paper, the setup of the exper- 
iment will be described. This includes a description of the domain 
and model (Section 2), the data (Section 3), and the assimilation 
technique (Section 4). In Section 5, the assimilation results will 
be presented for three different cycling experiments, and then dis- 
cussed in Section 6. Then, the final section (Section 7) will contain 
some concluding remarks. 

2. The forward ocean model 

The forward ocean model used in this assimilation experiment 
is NCOM. NCOM is similar to the Princeton Ocean Model (POM; 
Blumberg and Mellor, 1987) in that it is a free-surface ocean model 
based on the primitive equations and the hydrostatic, Boussinesq, 
and incompressible approximations. Also, both NCOM and POM 
are solved on an Arakawa C-grid and is leapfrog in time with an 
Asselin filter. NCOM differs from POM primarily in that the free- 
surface is treated implicitly and NCOM uses both sigma coordi- 
nates for the upper layers and z-level coordinates for the lower lay- 
ers. Further detailed specifications of NCOM can be found in Martin 
(2000), Barren et al. (2006), and Kara et al. (2006). 

Fig. 1 displays the discretized grid that is used for the NL for- 
ward model, the TLM, and the adjoint model needed for the assim- 
ilation experiments presented in this paper. The 30 x 34 black dots 
are spaced 2.5 km apart and represent the center points of the 
Arakawa C-grid at which sea surface height (SSH), salinity, and 

temperature are solved. This grid resolution requires a 4-min 
time-step for numerical stability. In the vertical, there are 40 layers 
with 19 sigma layers in the upper 137 m to resolve the shelf-break. 
The bathymetry is extracted from a Naval global bathymetry data- 
base (DBDB2) with 2-min resolution. All of the atmospheric forc- 
ing, including wind stress, atmospheric pressure, solar radiation, 
and surface heat flux, is interpolated from the Navy Operational 
Global Atmospheric Prediction System (NOGAPS) (Hogan and 
Rosmond, 1991), which has a horizontal resolution of 1° and is 
saved in 3-h increments. Within NCOM, open boundary conditions 
are determined using solutions from a larger model and: Flather 
boundary conditions for SSH, advection boundary conditions for 
the normal velocity components, and Orlanski boundary condi- 
tions for the tracer fields and the velocity components parallel to 
the boundaries. 

The NL forward ocean model has two distinct purposes within 
the cycling system. First, a global solution is needed for the initial 
conditions for the first cycle, and open boundary conditions for 
each time-step of the entire time period. In regards to this paper, 
the term 'global solution' refers to a solution that is computed 
independently from this experiment and is larger than the assim- 
ilation domain. For these experiments, historical results are ex- 
tracted from the operational 1/8° global NCOM solution (Barren 
et al., 2006) and used for this purpose. The resolution ratio be- 
tween this global solution and the assimilation domain is quite 
large (about 5.5:1). When nesting models, a ratio of 3:1 is typically 
preferred. However, a coarse resolution global solution is desired 
for the purpose of demonstrating the Cycling Representer Method. 
This is because when interpolated and compared to the high-reso- 
lution model, the background is relatively inaccurate, which there- 
fore causes the TLM stability to be relatively short. Since the 
horizontal and temporal resolution of the historical global NCOM 
solutions are significantly lower than what is needed for these 
experiments, values are linearly interpolated to the experiment 
grid and time-steps. Vertical interpolation is not needed because 
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the Mississippi Bight domain uses the same vertical structure as 
global NCOM (40 layers, 19 of which are sigma layers). 

The second purpose of the NL forward ocean model is to create a 
high-resolution forecast for each cycle using the initial and bound- 
ary conditions from the above global solution. Note that the global 
initial conditions are only needed for the first cycle; subsequent cy- 
cles use the assimilated solution from the previous cycle as the ini- 
tial conditions for the NL forecast. Each cycle forecast of SSH, 
temperature, salinity, and the two velocity components are saved 
on the local Mississippi Bight grid at 20-min intervals. This forecast 
solution is later used as the background field needed for the TLM, 
representer, and adjoint models (discussed in Section 4.1). 

3. The data 

3.7. The ADCP velocity measurements 

An array of 14 acoustic Doppler current profiler (ADCP) moor- 
ings was deployed by the Naval Research Laboratory (NRL) for 1 
year (May 2004-May 2005) along the shelf, shelf-break, and slope 
of the Mississippi Bight (about 100 miles south of Mobile, Ala- 
bama). These moorings were spaced about 10-20 km apart and 
are identified in Fig. 1 as the numbered gray stars. The shelf moor- 
ings (1-6) consisted of trawl resistant bottom mounted ADCPs lo- 
cated along the 60 and 90 m isobaths. The measurements collected 
from these shelf moorings were binned into 15-min time intervals 
and 2 m depth intervals. The slope moorings (7-14) consisted of 
long-range ADCPs buoyed at 500 m depth and located along the 
500 m and 1000 m isobaths. Velocity measurements for the upper 
500 m were collected and binned in 1-h time intervals and 10 m 
depth intervals. Even though the tides in this region have relatively 
small amplitudes, the tidal signal is removed from the data by per- 
forming a harmonic analysis on the year-long time series and 
removing the components of velocity associated with the top 8 ti- 
dal constituents (M2, S2, Kl, 01, n2, pi, k2, and ql). 

Teague et al. (2006) and Carnes et al. (2008) provide an exten- 
sive analysis of the collected velocity data set described above. 
They show that during the time period under examination in this 
study (the month of June, 2004), the velocity data on the slope 
(moorings 7-14) exhibits a general transition of the flow field from 
being predominantly westward to eastward. Also, the flow on the 
slope had a strong correlation with the wind stress (~0.8) and 
was fairly uniform in the along-shelf direction with a slight 
cross-shelf current towards the shore. Whereas, the circulation 
on the shelf (moorings 1-6) exhibits a weaker correlation with 
wind stress (less than 0.6), strong inertia! oscillations with a period 
of about 24 h, and a substantial velocity shear in the water column. 
The time series of velocity presented in Fig. 2 are for mooring 2 (see 
Fig. 1 for location) and clearly show that inertia] oscillations dom- 
inate the circulation on the shelf for the majority of the month and 
throughout most of the water column. 

3.2. Data sampling and the measurement functional 

For the experiments presented in this paper, ADCP velocity 
measurements were extracted from the above data set for the 
month of June 2004. However, since the measurements have a very 
high-resolution in the vertical and temporal dimensions, it is unre- 
alistic to assimilate all of the velocity measurements, even for a 
very short time interval. For the entire time period of this experi- 
ment, there are roughly 1.75 million individual measurements 
(the u- and v-components of velocity are considered as 2 distinct 
measurements). Therefore, the data must be sampled at a pre- 
scribed temporal and vertical frequency. After careful examination 
of the entire dataset it is apparent that the dominant temporal fea- 

ture is inertial oscillations on the shelf with a frequency of about 
24 h (Fig. 2). To resolve these features, a sampling frequency of 
3 h is used. In the vertical, it is apparent that on average the veloc- 
ity profiles can be represented with five layers or less. Therefore, at 
every 3-h increment the two components of velocity are sampled 
at up to five different depths at each of the 14 mooring locations. 
Consequently, this reduces the average number of measurements 
within a 12-h assimilation cycle to 538. The five measurement 
depth locations are automatically selected independently at each 
sampling time increment and at each horizontal mooring location. 
In order to illustrate how velocity measurements are sampled in 
the vertical. Fig. 3 shows a 3-h time series of velocity profiles from 
mooring 6. In this example, the sampling time is 15:00 (June 7, 
2004) and all velocity profiles (blue vectors) within ±1.5 h of this 
sampling time are used to determine the sampling depths for this 
time. For each velocity profile within this time period, the four 
strongest vertical gradients in velocity are determined (green dots 
in Fig. 3). These strongest gradients are then averaged over the 3-h 
time period (dashed green lines) and used to define the interfaces 
between the 5 layers. Finally, the measurements closest to the cen- 
ter of each of the five layers at the sampling time (15:00) are sam- 
pled (red vectors). If there is not a unique measurement in between 
two interfaces (i.e., the dashed green lines are too close together) 
then that particular layer is ignored for that sampling time. 

For each of the sampled measurements, a measurement func- 
tional is created to translate the state space into the measure- 
ment's data space. Remember that the 2 velocity components (u 
and v) are separate measurements. The measurement functional 
can be as simple as a value of 1.0 at the grid point location closest 
to the measurement and zeros for the rest of the state (i.e., a dirac 
delta function). Since not all of the data are used, however, it is de- 
sired that each measurement functional represents the region of 
state space that encompasses the measurement and includes the 
area of the neglected data. Therefore, each measurement func- 
tional will include representation ±1.5 h of the sampling time, 
the entire layer that the measurement represents, and a 3 grid- 
point horizontal radius surrounding the measurement. Each of 
these grid points, however, does not receive equal weighting. A 
Gaussian function is used to distribute the representation in all 
four-dimensions with the grid points closest to the measurement 
receiving the largest weighting. Finally, the measurement func- 
tional is scaled so that the sum of all nonzero values is equal to 1.0. 

In addition to the measurement values and their associated 
functionals, an error is required for each measurement. The mea- 
surement error for each observation is unique and is estimated 
to be the representation error that the sampled measurement 
has with respect to the neglected data that the measurement is 
representing. The instrument error is well under 1 cm/s and is con- 
sidered negligible relative to this representation error. The repre- 
sentation error is calculated by taking the root-mean-square 
(RMS) of the difference between the measurement value and each 
of the neglected data that falls within the ±1.5 h time window and 
the layer that the measurement represents. For the example in Fig. 
3, the error associated with the deepest u-component of velocity 
(bottom red vector) is computed by taking the RMS of the differ- 
ence between this value (-3.7 cm/s) and all of the u-components 
of the blue vectors below the bottom green line; this error comes 
out to be 2.3 cm/s. 

4. The assimilation system 

4.1. The linearized, representer. and adjoint models of NCOM 

Since the Representer Method is fundamentally performed 
by minimizing a quadratic cost function, the model must first be 
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Fig. 2. The velocity time series of ADCP mooring #2 (see Rig. 1) exhibits strong menial oscillations on the shelf during the entire month of June. 2004 and throughout the 
majority of the water column. The data has been detided using a harmonic analysis. 

Fig. 3. A 3-h time series of velocity profiles from mooring 6 is presented here to demonstrate how the assimilated data is sampled from the original data set. Velocity data 
from each mooring is assimilated every 3 hat up to 5 layers. This example shows the ±1.5 h time period surrounding the assimilation time of 15:00 CMT on 6/7/04. For each 
profile during this time period, the four strongest vertical gradients in velocity are calculated (green dots). The dashed green line is the mean location of the gradients over the 
time period and represents the interfaces of the 5 layers. The velocities closest to the center of each layer and in the middle of the time period (highlighted red) are 
assimilated. All of the velocity data (blue vectors) are used to estimate the representation error of the assimilated data for each layer. 

linearized in order for an absolute minimum of the cost function to 
be determined. This is accomplished by using the first-order 
approximation of Taylor's expansion of the NCOM dynamics ex- 
panded about a background solution. If the discretized NL model 
is A(x), then the TLM can be expressed as. 

dA 
A(XBC)+^(XBG)[*-XBG] (1) 

where x is the solution state and XBC is a background state. Since the 
TLM is an approximation to the full NL model, errors are naturally 
going to emerge in the TLM and these errors are going to propagate 
and grow with time. The TLM error is plotted in Fig. 4 for the first 10 
days of the experiment. The TLM accuracy is defined as the RMS of 
the velocity difference between the NL background and tangent lin- 
earized solutions. As can be seen, the TLM error is about 40 cm/s 
after only 1 day of propagation; after 3 days of propagation the er- 
ror surpasses 1 m/s and then begins to grow exponentially. There 
are many contributors that can impact TLM error. The first and fore- 
most contributor is the level of nonlinearity of the model. NCOM 
contains many highly nonlinear dynamical components that require 

linearization such as: the Smagorinsky horizontal mixing scheme, 
the Coriolis and curvature terms, density, advection, and every non- 
linear operation that includes depth (in NCOM, total depth is a func- 
tion of SSH). In these experiments, bottom friction and the Mellor- 
Yamada 2.5 vertical mixing scheme are not tangent linearized and 
are computed using the background state. The inclusion of these 
two linearized components was attempted, but the TLM was too 
unstable in order to perform a reasonable assimilation experiment. 

The second significant contributor that impacts the TLM stabil- 
ity is the accuracy of the background solution. In this study, back- 
ground solutions are computed on the high-resolution grid using 
interpolated Global NCOM solutions for open boundary conditions 
(and initial conditions in the first assimilation cycle). Since Global 
NCOM has roughly 1/5 the horizontal resolution and 1/90 the tem- 
poral resolution (global NCOM solutions are archived in 6-h incre- 
ments) relative to the high-resolution grid, inconsistencies arise 
fairly quickly during the calculation of the NL background. These 
inconsistencies will be discussed in greater detail in Section 4.3. 
Another important contributor that is reducing the TLM stability 
is the steep bathymetry in the southeast corner of the domain. This 
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Fig. 4. TIM stability is represented here by the evolution of the RMS of the velocity difference between the tangent linearized and nonlinear solutions of NCOM. The TLM 
maintains relative accuracy for only about the first day, and then the error of the TLM surpasses 1 m/s after about 3 days of propagation. 

steep bathymetry may be amplifying the NL baroclinic processes 
occurring at the shelf-break. 

It is important to note that the Representer Method does not di- 
rectly use the TLM. Instead, it uses just the perturbation compo- 
nent of (1), 

dA _ (2) 

where Sx = x XBG- The above equation is typically referred to as 
the representer model, because it is used to propagate the perturba- 
tion of the state forward in time to create the representer functions. 
The only difference between Eqs. (1) and (2) is the addition of the 
background model A(J?BG) in the calculation of the TLM. This term 
is essentially an offset of the perturbation and therefore does not 
impact the stability of the linearization. This means that the charac- 
teristics that impact TLM stability and cause the linearization errors 
displayed in Fig. 4 are the same for the representer model. Even 
though it is the representer model that is being used in the assim- 
ilation experiments, throughout this paper the errors associated 
with linearization are referred to as TLM error (or TLM stability). 

Another key component of the Representer Method is the ad- 
joint model, which is simply the transpose of the representer 
model, 

dA - 
^(xK) (3) 

However, since the propagation of NCOM dynamics is mostly expli- 
cit, it cannot be expressed in matrix notation and therefore cannot 
be directly transposed. Therefore, the adjoint was manually gener- 
ated by reversing all of the operations in space and time. 

4.2. A priori error covariances 

Model error covariances ought to be specified for each variable 
that is believed to be in error (weak constraint). However, since er- 
ror covariances are among the more difficult quantities to accu- 
rately estimate and can be computationally expensive to include 
(Bennett, 2002; Talagrand, 1999), it is not feasible to treat all vari- 
ables as weak constraint; and for the variables that are treated as 
weak constraint, simplifications must be made in order to con- 
struct and implement their error covariances. Since the purpose 

of this paper is to demonstrate the Cycling Representer Method, 
a sufficient effort was not dedicated to constructing accurate error 
covariances. 

The assimilation results presented in this paper were computed 
by treating the initial conditions, the boundary conditions, and the 
interior solution of both velocity components as weak constraints. 
The covariance for each of these weak constraint variables was 
constructed with a constant variance in space and time, and isotro- 
pic correlations described by a Gaussian function in space and a 
moving average in time. An error of 5 cm/s was used for the initial 
and boundary conditions, and an error of 1 cm/s was used for the 
interior solution. The Gaussian functions used to construct the cor- 
relations were formulated with an e-folding scale of 15 grid points 
in each of the 3 spatial dimensions and 2 h in time. 

The large spatial dynamic error decorrelation length scale is 
chosen as a balance between the length scales of features resolved 
by the data and the global solution. It is desired that the solution be 
able to resolve the features represented by the data. However, 
since the assimilation system is driven by the coarse global solu- 
tion through the open boundary conditions, the solution needs to 
be smooth enough to provide an initial condition that is consistent 
with these open boundary conditions in order to ensure a stable NL 
forecast. Therefore, the correlation length scale of the dynamic er- 
ror was chosen to be the average between the length scale of the 
observation correlation, and the length scale of features that the 
global solution can be expected to resolve. The length scale of 
the observations is computed by solving for L in the following e- 
folding equation, 

a = exp(-d2/L2) (4) 

where d contains all of the distances between the 14 moorings and 
a is the data correlation matrix. Correlation is computed between 
all observations made in the month of June, 2004 from all moorings, 
at all depths, and both velocity components. The average length 
scale calculated from these correlations is 21 km. The horizontal 
grid resolution of the global solution is 13 km, and if, on average, 
4 grid points are needed to resolve a particular feature, then the glo- 
bal solution can only be expected to resolve features with length 
scales of about 52 km. Therefore, the average correlation length 
scale that is used in this study is 37 km, which corresponds to about 
15 grid points on the Mississippi Bight grid. 
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4.3. The Cycling Representer Method 

The formulation of the Cycling Representer Method that is used 
in this paper is similar to the formulation described in detail in 
Ngodock et al. (2007a), therefore it is not prudent to repeat it here. 
The primary difference with the formulation that is used in this 
study is how the background for each new cycle is computed. 
The background for each cycle (other than the first cycle) is the 
NL forecast from the previous cycle. The forecast is computed by 
propagating the NL model forward using the final assimilated solu- 
tion from the previous cycle as the initial condition and boundary 
conditions from both the previous forecast and the global solution. 
Fig. 5 displays the flowchart of the cycling methodology that is 
used in this study. At the beginning of each experiment, a NL back- 
ground field is initially created encompassing the time period of 
the first 4 cycles using the global solution for the initial and bound- 
ary conditions (Fig. 5a-c). An assimilated solution is then com- 
puted using this background that encompasses the first cycle 
with an additional 3 h into the second cycle (Fig. 5d). The back- 
ground for the second cycle is created by performing another 4-cy- 
cle forecast using the solution at the end of the first cycle as the 
initial conditions (Fig. 5f)- The boundary conditions for this forecast 
are created by, first, extracting the boundary conditions from the 
initial background that fall within this new time period, and using 
a time weighted average to merge the first 3 h of these boundary 
conditions with the overlapping 3 h from the previous solution. 
Then, a time weighted average is used to merge boundary condi- 
tions from the global solution onto the end in order to encompass 
the whole 4-cycle time period (Fig. 5e). Following the calculation of 
this forecast, an assimilation is performed for the second cycle (Fig. 
5g). This process is repeated for all subsequent cycles. 

The 3-h overlapping and linear ramping of the boundary condi- 
tions that occurs in step (e) of Fig. 5 is needed to provide a smooth 
transition of boundary conditions from the three different solu- 
tions. Without this smoothing, it is likely that the forecast would 
be unstable. This is because there is typically a dynamic inconsis- 

tency between its initial conditions (taken from the previous 
assimilated solution) and its boundary conditions (taken from 
the previous forecast). Inconsistencies can also arise between the 
previous forecast and the global solution resulting from the large 
difference in resolution. This inconsistency is why each forecast 
is propagated over a time period of four cycles. By computing a 
forecast over an extended period of time, the system is given a 
few cycles to filter out the impact of merging the global solution 
before it is used as the background for assimilation. 

As is the case in Ngodock et al., 2007a,b, the Representer Meth- 
od for each cycle is solved indirectly using an iterative conjugate 
gradient method (CG). This differs from the direct approach in that 
instead of computing representers for every measurement and 
inverting the representer matrix to obtain the representer coeffi- 
cients, the indirect method uses the CC to iterate through the 
search directions in data space to converge upon the representer 
coefficients that minimize the cost function. In this study, the CC 
is considered converged and the stopping criteria satisfied when 
the norm of the residuals relative to the initial norm is less than 
10~3. For a well-conditioned problem, the number of required CC 
iterations is significantly less than the total number of measure- 
ments, therefore resulting in a substantial savings in computa- 
tional cost compared to the direct method. 

5. Cycling experiment results 

As a precursor to the cycling experiments, a long 10-day assim- 
ilation experiment was attempted, and the resulting solution misfit 
(red) is plotted in Fig. 6A. The background misfit (blue) is also plot- 
ted for comparison. These misfits are computed at each of the 3-h 
data sampling time increments and are the RMS of the difference 
between the data and the solution projected into data space using 
the measurement functional described in Section 3.2. The results 
in Fig. 6A reveal that there is a fairly consistent correlation be- 
tween the accuracy of the assimilated solution and the TLM stabil- 
ity shown in Fig. 4. The assimilation performs fairly well for the 

| Cycle 1   | Cycle 2   | Cycle 3   | Cycle 4   | Cycle 5   [ Cycle 6   | 

a) 

b) 

«)| 

d)\—WDM 

Time 

-BC rorxBG(2) 

|*—*SOL(3)H 

Fig. 5. Flowchart of the cycling methodology, (a) A global solution (purple) is needed that covers the entire time-frame and encompasses the domain of interest, (b) For 
the first cycle, initial and boundary conditions are extracted and interpolated from this global solution and used to (c) propagate a high-resolution NL forecast (blue) for 
4 cycles. This forecast is then used as the background field for the (d) first cycle assimilation (red), (e) The boundary conditions for the next forecast are obtained from a 
combination of the previous solution (XSOLO)). the previous background (*BCO)). and the global solution (XCBC). The 3-h overlap ofxsodl) and XBG(I) at the beginning of 
cycle 2, and of XBC(1) and XCBC at the end of cycle 4 are linearly ramped to create a smooth transition, (f) Using these combined BCs along with IC from XSOLO). a NL 
forecast. xK,(2), is created for the next four cycles, (g) This forecast is then used in computing the next assimilated solution. XSOLU). The steps (e-g) are repeated for 
each consecutive cycle. 
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Fig. 6. RMS ((t|u| - d) is computed and plotted at each 3-h data sampling time stamp. L is the measurement functional that projects the velocity field from state space to data 
space, d is the data, and u represents velocity from the nonlinear background (blue) and the assimilated solution (red). (A) Ten day assimilation experiment. (B) Two day 
cycling experiment, where the dashed line represents the break between cycles. 

first day, then over the next couple of days the assimilated solution 
begins to lose skill, and by the third day it becomes unstable and 
the errors begin to increase exponentially. 

In a recent study, Ngodock et al. (2007a) were able to demon- 
strate with assimilation experiments with the Lorenz attractor that 
even though the TLM was accurate for only about 0.5 time units, 
the assimilated solution was able to track the data reasonably well 
for roughly 7 time units. Similarly, in Kurapov et al. (2007), the 
authors performed variational assimilation experiments with a 
nonlinear near-shore circulation model and demonstrated the im- 
pact that the error covariance specification has on the accuracy of 
the assimilated solution. They showed that by using a composite 
covariance with a temporal correlation separated into both steady 
state and small amplitude time-variable parts, accurate solutions 
could be obtained for time periods that significantly exceed the 
time interval of TLM stability. 

It is believed that because of the overly simplified error covari- 
ances used in these experiments (Section 4.2), the assimilation is 
not able to perform accurately beyond the time period of TLM sta- 
bility. Therefore, since the TLM error becomes unmanageable after 
about 1 day of propagation (Fig. 4), the assimilation cycle should be 
equal or shorter than this in order to ensure an accurate solution. 
Several cycling experiments were performed to determine the 
optimal cycle time period that produces the solution with the over- 
all best-fit to the data. The optimal cycle time period needs to be 

short enough to ensure stability of the solution, and as long as pos- 
sible to maximize the temporal correlation of the data and model. 

5./. Two day cycling experiment 

The first cycling experiment that was performed employs 2-day 
cycles. The misfit results from this experiment are displayed in Fig. 
6B and reveal that the first cycle achieved fairly accurate results, 
but the second cycle began to severely lose skill midway through 
the cycle. At the end of the second cycle the solution was too poor 
to provide a sufficient initial condition for the next forecast (the 
forecast grew numerically unstable). The dashed black line in this 
figure represents the break between cycles and the vertical portion 
of the blue line along this dashed line is a result of the background 
being reinitialized to the assimilated solution. As hypothesized 
above, it is apparent that a 2-day cycle time period is too long in 
order to ensure solution accuracy throughout the cycling. 

5.2. Twelve hours cycling experiment 

Fig. 7 displays the resulting misfits for the next cycling experi- 
ment consisting of 12-h cycles performed over 28 days. This assim- 
ilation experiment did quite well and there were no problems with 
providing a dynamically consistent solution as an initial condition 
for the forecasts. The general trend of the solution misfit changes 
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direction several times during the month of June; it is downward 
from June 8 to 14, upward from June 14 to 16, downward from 
June 16 to 24, and concludes with an upward trend until the end 
of the experiment. Overall, however, the assimilation accuracy 
and forecast skill are improving through the procession of the cy- 
cles as will be discussed later in Section 6.1. Fig. 7 may be some- 
what misleading in that it initially appears that the solution 
misfit is not significantly better than the background misfit and 
that the background misfit is following the same general down- 
ward trend. One must remember that the background is continu- 
ally being reinitialized to the solution at the end of each cycle, 
and each individual 12-h cycle does not allow much time for the 
background misfit to grow. 

The combined correlation coefficient between the solution and 
the data for all cycles is 0.411, whereas the correlation coefficient 
between the background and the data is 0.285. This improvement 
is promising, considering the difficulty in correcting a four-dimen- 
sional velocity field towards a large dynamic dataset while main- 
taining model stability. To demonstrate this dynamic stability 
and the general improvement of the assimilated solution, time ser- 
ies of the velocity components for the background (blue), solution 
(red), and the data (black) are plotted in Fig. 8 for two selected 
locations: (A) the first layer of mooring 7 and (B) the fifth layer 
of mooring 13 (see Fig. 1 for mooring locations). In this figure the 
assimilated and background solutions are taken at the grid point 
and depth location that are closest to each velocity measurement. 
The blue and red values are the correlation coefficients between 
the data and the background and assimilated solutions, 
respectively. 

5.3. One day cycling experiment 

The final cycling experiment consists of 28 1-day assimilation 
cycles and the misfits from this experiment are displayed in Fig. 
9. After careful examination of this plot, it is apparent that for 
the first 12 days of the experiment, the 1-day cycling outperforms 
the 12-h cycling. From June 2 to June 14, the solution misfit in the 
1-day experiment obtains lower values relative to the 12-h cycling 

and the general slope has a steeper downward trend. The slope of 
the linear trend of the solution misfits during this time period is 
0.0019 ms '/day and 0.0033 ms '/day for the 12-h and 24-h 
experiments, respectively. Also, in the 1-day cycle experiment 
there is a significant improvement in the background misfit. This 
is signified by a steep downward trend starting at the middle of 
each cycle. It is believed that this drastic change in the background 
misfit is due to the ability to resolve inertial oscillations, which are 
relatively strong on the shelf in this region. The longer 1 -day cycles 
are able to better resolve the 24-h inertial oscillations and there- 
fore produce a more accurate solution that better matches the ob- 
served flow field. This result illustrates the importance of choosing 
a cycle time period that is long enough to include the important 
dynamic features that are prevalent in the region and allow the 
data to influence as long of a time window as possible. 

Similar to the 12-h cycling experiment (Fig. 7), the misfits in the 
1-day experiment begin to rise on June 14. The difference, how- 
ever, is that in the 1-day experiment, the final solution of cycle 
13 (June 15) was too dynamically inconsistent and failed to pro- 
vide an adequate initial condition for a stable forecast in the next 
cycle. To overcome this instability, a portion (18%) of the previous 
background solution had to be merged with the final assimilated 
solution at the initial condition in order to stabilize the forecast. 
As a reminder, it was discussed in Section 4.3 that the initial and 
boundary conditions for the first 3 h of the forecast are a combina- 
tion of both the assimilated and background solutions, with the 
background being linearly ramped from having 0% influence at 
the initial conditions to 100% at the end of the 3 h. This strategy 
worked well with the 12-h cycling experiment (Section 5.2). In this 
case, however, the ramping of the background solution had to be- 
gin at 18% instead of 0%. This problem is persistent throughout the 
latter half of the 1-day cycling experiment. For example, the cycles 
beginning on June 17, 21, 26, and 28 required the background 
ramping to begin at 62%, 90%, 81%, and 45%, respectively, in order 
for the NL forecast to overcome the inaccurate final assimilated 
solutions from the previous cycles and produce a stable, consistent 
background field. Therefore, the performance of the 1-day cycling 
is better than the 12-h cycling for the first half of the experiment 
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Fig. 7. This plot is similar to Fig. 6 for the 12-h cycling experiment. 
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Fig. 8. Time series of velocity components of the data (black), assimilated solution (red), and background (blue) for the 12-h cycling experiment at (A) the first layer of 
mooring 7 and (B) the fifth layer of mooring 13 (mooring locations are labeled in Fig. 1). The colored values represent the corresponding correlation coefficient between the 
background and data (blue), and the solution and data (red). 

time period. However, since the 1 -day cycling proved to be inade- 
quate at obtaining and maintaining accurate solutions during the 
latter half of the experiment, the 12-h cycling would have to be 
the clear choice in an operational setting. 

The breakdown of the 1-day cycling experiment can be ex- 
plained by examining the TLM stability for each cycle. Fig. 10 
shows the RMS of the velocity difference between the background 
and TLM for each cycle. The dashed red line represents 1 standard 
deviation (STD) of the background velocity over the entire time 
period of the experiment and is used here as an error limit to gauge 
TLM stability. Except for the first cycle, the TLM error for each 1- 
day cycle remains less than this limit up to June 14. For each of 
the cycles between June 14 and June 21, the TLM error rises rather 
quickly and loses stability within the 1-day cycle time period. 
Beginning with the June 21st cycle, the TLM error goes down for 
a few cycles then back up again until the end of the experiment 
when it starts to decrease. There is a consistent correlation be- 
tween the assimilated solution accuracy displayed in Fig. 9 and 

the TLM stability displayed in Fig. 10 throughout the cycles. For 
each of the cycles mentioned in the previous paragraph that re- 
quired an initial condition background infusion in order to produce 
a stable forecast, the TLM is inaccurate in the corresponding previ- 
ous cycle. 

There are several different mechanisms that could be causing 
the TLM stability to drastically fluctuate throughout the cycles. 
Large increases in TLM error can be caused by strong oceanic 
events (such as eddies and fronts) introduced directly through 
the open boundary conditions, as is most likely the case for the 
large peak in error on June 21 (Fig. 9). According to the global back- 
ground solution (not shown), a warm-core eddy begins to pene- 
trate the southern boundary of the domain towards the middle 
of the June 20th cycle. Another mechanism that can significantly 
impact the TLM stability is atmospheric events introduced through 
the wind stress. The rapid increase in TLM error exhibited in the 
June 14th cycle is a result of such a mechanism. Fig. 11 displays 
the  time  series  of NOGAPS wind  stress averaged  over the 
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Fig. 9. This plot is similar to Fig. 7 for the 1-day cycling experiment. 
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Fig. 10. TLM stability (similar to Fig. 4) for each of the 1-day cycles in Fig. 9. Each blue line, beginning at the start of each cycle, is the RMS velocity difference between the 
background forecast and the TLM for the corresponding cycle. The dashed red line is 1 standard deviation of the background velocity over the entire month of June, and is used 
here to gauge TLM stability. Other than the first cycle, the TLM is stable over each of the 1-day cycles up to June 14, at which point the TLM errors begin to rise sharply. 

Mississippi Bight domain, and there is clearly a strong wind event 
that occurs during this cycle. Fig. 12 shows several snapshots of the 
TLM response to this strong southeasterly wind burst. The first 
snapshot is the TLM initial condition of surface velocity and tem- 
perature for the cycle beginning June 14 (this is also the final solu- 
tion from the previous cycle). The second snapshot is 9 h into the 
cycle when the southeasterly wind burst has caused a large 
build-up of cold water in the northwest corner of the domain. By 

the end of the 1-day cycle (third snapshot), it is apparent that 
the shock from the wind burst has caused a significant build-up 
of numerical noise in the TLM (especially on the shelf). 

6. Discussion 

The  main  purpose of developing the Cycling  Representer 
Method is to establish a robust 4DVAR assimilation system that 
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Fig. 11. Time series of the horizontally averaged surface wind stress. The wind stress is from NOGAPS and is used to force NCOM. There is a very large southeasterly wind 
burst on June 14. which corresponds to the rapid decrease in TLM stability in Fig. 10. 

can be implemented in an operational setting. The Cycling Repre- 
senter Method is ideal for this effort, because, the cycles can be 
shortened in order to maintain TLM accuracy, especially during 
highly nonlinear events that rapidly degrades the TLM stability 
(Section 5.3). A direct consequence of decreasing the cycle time 
period, however, is that the temporal correlation of the data and 
model is reduced, therefore reducing the level of influence that 
the data can have on correcting the solution. This disadvantage 
can result in the inability to resolve features with time scales larger 
than the cycle length. For example, the 1-day cycling was able to 
better resolve the 24-h inertial oscillations and therefore had 
slightly lower errors than the 12-h cycling. 

There are several assumptions that were made in this study that 
deteriorated the quality of the assimilation and reduced the time 
period of TLM stability. These assumptions will require further 
investigation before this system can be applied operationally. The 
first of these assumptions is that only the velocity components 
are treated as weak constraint. As a minimum, the other prognostic 
variables (SSH, temperature, and salinity) should be treated as 
weak constraint, but other variables such as wind stress ought to 
be included too. The second assumption that was made was in 
the creation of the over-simplified error covariances. The error cor- 
relations should at least be anisotropic and a significance test 
ought to be performed to determine the appropriate rescaling of 
the error variances (it is demonstrated below in Section 6.1 that 
the specified error variances are too low). 

Another assumption that was made in this study, is that 1 out- 
er-loop is sufficient. Earlier applications of the Cycling Representer 
Method with simpler nonlinear problems (Ngodock et al., 2007a,b 
concluded that only a single outer-loop was needed beyond the 
first few cycles to ensure accurate assimilation throughout the 
cycles. Because of this conclusion, we hypothesized that the 
experiments with NCOM could be successful without the use of 
outer-loops. However, results presented below (Section 6.2) show 
that there is at least a moderate improvement when a second out- 
er-loop is used. In Rosmond and Xu (2006), the authors performed 

Cycling Representer experiments using 6 outer-loops, however, 
their results showed that only 2 outer-loops were necessary to 
achieve over 90% of the nonlinear adjustments. These authors also 
demonstrated that the computational expense of performing 
additional outer-loops is not significant. This is because the num- 
ber of required inner iterations of the CG can be significantly 
reduced with each successive outer-loop. Future development of 
this assimilation system will include the usage of outer-loops. 

6. J. Performance of the Cycling Representer Method 

To analyze the performance of the Cycling Representer Method 
and gauge how well it might do if the system were allowed to con- 
tinue to cycle indefinitely, several post-processing results are pre- 
sented here for the entire 12-h assimilation cycle experiment. To 
demonstrate the value of solving the Representer Method indi- 
rectly, Fig. 13 shows the evolution of the CC convergence for each 
of the 56 cycles (black lines). Overlaid on this wide spread of re- 
sults is the best-fit exponential curve (thick red line). This curve 
conveys that the average total number of CC iterations required 
to reach the convergence criteria (10 3) is about 62, which is 
roughly 12% of the average number of measurements in each cycle 
(538). This result corresponds to a substantial savings in computa- 
tional cost relative to using the direct method and reveals that the 
assimilation problem is generally well-conditioned. 

Fig. 14 displays the total number of required CG iterations (blue 
line) and the total cost of the cost function (green line) relative to 
the 12-h cycles. Both of these results are quite noisy, but over the 
entire 28-day time period their corresponding linear best-fits have 
a downward trend. The slight overall decrease in the number of re- 
quired CG iterations as the system is cycled suggests that the 
assimilation problem for each consecutive cycle is becoming better 
conditioned, and the steeper downward trend of the total cost re- 
veals that the overall fit between the assimilated solution and the 
data, dynamics, initial conditions, and boundary conditions is 
improving as the cycling progresses  forward. The  total  cost 
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Fig. 12. The TLM response to the wind burst displayed in Fig. 11. Plots are of the surface temperature and velocity at (A) the beginning of the cycle (00:00, 6/14), then at (B) 
09 h into the cycle the southeasterly wind burst has caused a large build-up of cold water in the northwest corner. (C) By the end of the 1-day cycle, the shock from the wind 
burst has caused the TLM solution to be dynamically inconsistent and in significant error, especially on the shelf. 

function values displayed in Fig. 14 (green), however, are relatively 
high. The cost function at its minimum C/min) should have a chi- 
square distribution with M degrees of freedom, where M is the 
number of measurements (Bennett, 1992). Therefore, the expected 
value ofJmi„ should be M with a variance of 2M. Since there are, on 
average, 538 measurements in each of the 12-h cycles, then the ex- 
pected value of the total cost should be. 

w« M ± V2M = 538 ± 33 (5) 

The fact that the actual values of ymm are significantly larger than 
there expected values reveal that the model errors specified in the 
a priori error covariances are too small and should be rescaled by 
a factor of \/Jmi„/M » 4.0 in order to bring the total cost values 
down to an appropriate expected value. However, as stated previ- 
ously, the proper specification of the error covariances is not a focal 
point of this paper; therefore, this work will be saved for future 
development. 

It is uncertain how long the trends in Fig. 14 would continue 
downward if the cycling were to continue beyond this 28-day 
experiment. This result, however, is promising in that the time per- 

iod appears to be long enough to contain a significant portion of 
the dynamic features that are prevalent in this region, and there 
is no reason to assume a drastic change in these trends. 

6.2. Nonlinear iterations 

Since the assimilation experiments presented in this study are 
based on the linearization of a model, there is going to be an inher- 
ent error associated with this approximation. Performing nonlinear 
outer-loops is a method to try and overcome this error, but it can 
be computationally expensive if not implemented correctly. It en- 
tails reinitializing the background with the previous assimilated 
solution and then performing another assimilation for each out- 
er-loop. As an example, 3 outer-loops were performed on the first 
cycle of the 12-h cycling experiment. The resulting misfits for this 
example are presented in Fig. 15. They show that performing a sec- 
ond nonlinear iteration (dashed red line) moderately improves the 
solution, but performing a third iteration (solid green line) does not 
improves the solution at all. Therefore, in this experiment it may 
have been beneficial to apply a second outer-loop to all the cycles. 
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Fig. 13. The evolution of CG convergence criteria for each of the 56 12-h assimilation cycles (black lines). The convergence criterion is calculated as the norm of the residuals 
relative to the initial norm and is assumed converged when it is less than or equal to 10 '. The red line is the exponential best-fit of the spread of CG convergence plots, 
showing that on average the 12-h cycle converged in about 62 CG iterations. This is about 12% of the average number of measurements (538) in each cycle. 
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Fig. 14. Progression of the total number of required CG iterations (blue) and the total cost of the cost function (green) through the 12-h cycles. Even though both of these 
results are quite noisy, their corresponding linear best-fits (thick lines) have a downward trend as the number of cycles is increased. 

7. Conclusions 

Due to the extreme conditions that were deliberately speci- 
fied for this experiment (a coarse background field, open bound- 
ary conditions along all four boundaries, complex bathymetry, 
etc.) the TLM of NCOM is only accurate for about a day. It is 
demonstrated in this study that the Cycling Representer Method 
can be performed using 12-h cycles to overcome this complica- 
tion and achieve an improved analysis of the flow field for what 
appears to be an indefinite period of time. Also, because the 

forecasts are reinitialized to the analysis field at the beginning 
of each cycle, both the forecast and analysis errors decrease as 
the system progresses through the cycles. Care needs to be taken 
though in selecting the appropriate time-frame of the cycle. 
If the cycle is too long and is beyond the range of TLM accuracy, 
the solution will end up diverging from the data and obstructing 
the continuity of the cycling system, as is the case in both the 
2-day and the latter half of the 1-day cycling experiments. On 
the other hand, if the cycles are too short, valuable information 
can  be  lost due  to  the  lack  of temporal  representation  of 
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Fig. 15. The background and assimilated solution velocity errors for 3 nonlinear outer-loops of the first 12-h cycle of Fig. 7 (June 2. 2004). The solution from the first outer- 
loop (solid red line) was created using the linearization about the original background (blue line). This background was then replaced by the solution and used for the 
linearization of the second outer-loop (dashed red line), and so forth for the third loop (solid green line). This plot shows that performing a second outer-loop produces a 
moderately improved solution, and that performing a third outer-loop does not improve the solution at all. 

important dynamic features thus causing inaccuracies in the 
analysis field, as is the case in the 12-h cycle experiment not 
resolving inertial oscillations. For the system described in this 
study, the 1-day cycling experiment performed the best for the 
first half of the experiment, but then a strong wind burst oc- 
curred that decreased the stability of the TLM and disrupted 
the continuity of the cycling. Whereas, the 12-h cycling was 
short enough to handle the increased TLM error associated with 
the wind burst. 

Overall, this paper demonstrates that the Cycling Representer 
Method can be a valuable assimilation tool within an operational 
analysis/forecast system. One of the difficulties that would have 
to be overcome in order to achieve this operational status (other 
than the obvious improvements discussed in Section 6) is in 
determining the optimal time-frame of the cycle. In this paper 
the optimal cycle period was a mixture of 12 h and 1 day. These 
cycle periods, however, would most likely not be the optimal 
choice if this assimilation system were to be applied to a differ- 
ent problem. For example, if the assimilation system were ap- 
plied during a different time period, or to a different coastal 
region, or used a different background, or had a different resolu- 
tion, etc., then the optimal cycle time period would definitely 
have to be determined again, and possibly periodically through- 
out the cycling (which would have benefited the experiments in 
this paper). If the cycle time window must remain constant in an 
operational setting, then for the experiments presented in this 
paper the 12-h cycling would need to be used to overcome the 
large peaks in TLM error. However, another possible solution is 
to set up a variable Cycling Representer Method system that 
autonomously computes the TLM at the beginning of each cycle, 
and then uses the maximum time-frame of TLM accuracy in or- 
der to determine the appropriate time period for that particular 
cycle. If such a system were employed to these experiments, 
then the resulting cycles would have been a mixture of 12 and 
24 h. 
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